
ORTHOGONAL BASES OF SYMMETRIZED TENSOR SPACES

Randall R. Holmes

Abstract. It is shown that a symmetrized tensor space does not have an orthogonal basis consisting
of standard symmetrized tensors if the associated permutation group is 2-transitive. In particular, no
such basis exists if the group is the symmetric group or the alternating group as conjectured by T.-Y.
Tam and the author.

Let V be a finite-dimensional complex inner product space and assume m := dim V ≥ 2 (to
avoid trivialities). Let G be a subgroup of the symmetric group Sn. The n-fold tensor product
V n = V ⊗· · ·⊗V is a left CG-module with action given by σ(v1⊗· · ·⊗vn) = vσ−1(1)⊗· · ·⊗vσ−1(n)

(vi ∈ V , σ ∈ G).
Fix an orthonormal basis {e1, . . . , em} of V . Let Γ = {γ ∈ Zn | 1 ≤ γi ≤ m} and let Irr(G) denote

the set of irreducible characters of G. Given γ ∈ Γ and χ ∈ Irr(G), set eχ
γ = sχ(eγ1⊗· · ·⊗eγn) ∈ V n,

where sχ = χ(1)
|G|

∑
σ∈G χ(σ)σ ∈ CG. The vectors eχ

γ are called standard symmetrized tensors. The
inner product on V induces an inner product on V n. If W ≤ V n has a basis consisting of mutually
orthogonal standard symmetrized tensors, we will say that W has an o-basis.

It follows easily from the standard results quoted below that if G is abelian, then V n has an
o-basis. In [2], it was shown that if G is the dihedral group Dn ≤ Sn, then V n has an o-basis if and
only if n is a power of 2. In that paper, it was also shown that if G = S4 or A4 (alternating group),
then V n does not have an o-basis, and it was conjectured that in general this is the case whenever
G = Sn or An with n ≥ 4. Here, we prove this conjecture by establishing the more general result
that if G is 2-transitive and n ≥ 3, then V n does not have an o-basis.

We recall a few standard results. Choose a set ∆ of representatives of the orbits of Γ under the
right action of G given by γτ = (γτ(1), . . . , γτ(n)) (γ ∈ Γ, τ ∈ G). Then V n =

⊕
V χ

γ (orthogonal
direct sum), where V χ

γ := 〈eχ
γτ | τ ∈ G〉 and the sum is over all χ ∈ Irr(G), γ ∈ ∆.

Given γ ∈ Γ, set Gγ := {σ ∈ G | γσ = γ} ≤ G. We have

(eχ
γµ, eχ

γτ ) =
χ(1)
|G|

∑

σ∈Gγτ

χ(στ−1µ) =
χ(1)
|G|

∑

σ∈Gγ

χ(σµτ−1),

the first equality from [1, p. 339] and the second from the observations that τGγτ τ−1 = Gγ and
χ(στ−1µ) = χ(τστ−1µτ−1).

For any H ≤ G, let (·, ·)H denote the usual inner product on the space of complex-valued class
functions on H. By [1, p. 339], dim V χ

γ = χ(1)(χ, 1)Gγ .
Set In = {1, . . . , n}. Recall that G is 2-transitive if, with respect to the componentwise action,

it is transitive on the set of pairs (i, j), with i, j ∈ In, i 6= j. Note that if G is 2-transitive, then for
any i ∈ In, the subgroup {σ ∈ G |σ(i) = i} of G is transitive on the set In\{i}.
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Theorem. Assume n ≥ 3. If G is 2-transitive, then V n does not have an o-basis.

Proof. By the remarks above, it is enough to show that V χ
γ does not have an o-basis for some

χ ∈ Irr(G), γ ∈ Γ.
Let H = {σ ∈ G |σ(n) = n} < G and denote by ψ the induced character (1H)G, so that

ψ(σ) = |{i |σ(i) = i}| for σ ∈ G (see [4, p. 68]).
Let ρ ∈ G−H and for i ∈ In, set Ri = {σ ∈ H |σρ(i) = i}. Clearly, Ri = ∅ if i ∈ {n, ρ−1(n)}.

Assume i /∈ {n, ρ−1(n)}. Since H acts transitively on In−1, there exists some τ ∈ Ri. Then
Ri = Hiτ , where Hi := {σ ∈ H |σ(i) = i}. Now [H : Hi] equals the number of elements in the
orbit of i under the action of H, so [H : Hi] = n − 1. Therefore, |Ri| = |Hiτ | = |Hi| = |H|/[H :
Hi] = |H|/(n− 1). We obtain the formula

∑

σ∈H

ψ(σρ) =
n∑

i=1

|Ri| =
∑

i 6=n,ρ−1(n)

|Ri| = n− 2
n− 1

|H|.

Since (ψ, 1)G = (1, 1)H = 1 by Frobenius reciprocity, 1 is a constituent of ψ, whence χ := ψ − 1
is a character of G. Moreover, the 2-transitivity of G implies that (ψ,ψ)G = 2 (see [4, p. 68]).
Hence, (χ, χ)G = 1, so that χ is irreducible.

Let γ = (1, . . . , 1, 2) ∈ Γ and note that Gγ = H. Let µ and τ be representatives of distinct right
cosets of H in G. Then ρ := µτ−1 ∈ G−H, so the discussion above shows that

(eχ
γµ, eχ

γτ ) =
χ(1)
|G|

∑

σ∈H

χ(σµτ−1) =
χ(1)
|G|

[
n− 2
n− 1

|H| − |H|
]

< 0.

It follows that distinct standard symmetrized tensors in V χ
γ are not orthogonal.

On the other hand,

dim V χ
γ = χ(1)(χ, 1)H = (n− 1)[(ψ, 1)H − 1],

and since (ψ, 1)H = (ψ,ψ)G = 2 by Frobenius reciprocity, dimV χ
γ = n− 1 > 1.

Therefore, V χ
γ does not have an o-basis. This completes the proof. ¤

Corollary. If G = Sn (n ≥ 3) or G = An (n ≥ 4), then V n does not have an o-basis.

Proof. Clearly each Sn is 2-transitive, and it is an easy exercise to show that An is 2-transitive if
n ≥ 4. ¤

2-transitive groups have been studied extensively (see [3, Chapter XII], for example).
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